Multiplying fractions
To find the product of two fractions \(\frac{a}{b}\) and \(\frac{c}{d}\) multiply their numerators and denominators and then reduce:
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$
Example
$$ \frac{1}{3} \cdot \frac{2}{5} = \frac{1 \cdot 2}{3 \cdot 5} = \frac{2}{15} $$
Prime factorisation in place
The example above did not require a reduction, so here is a more complex example:
$$ \frac{14}{15} \cdot \frac{30}{140} = \frac{420}{2100} $$
It would be laborious to reduce such a large product using factor trees or the repeated application of divisors, as defined in reducing fractions. We can use a more efficient method. This method can be applied at the point at which we conduct the multiplication rather than afterwards once we have the product. We express the the initial multiplicands as prime factors:
$$ \frac{14}{15} \cdot \frac{30}{140} = \frac{(2 \cdot 7) \cdot (2 \cdot 3 \cdot 5) }{(3 \cdot 5) \cdot (2 \cdot 2 \cdot 7 \cdot 5)} $$
We now have the product in factorised form before we have applied the multiplication so we can go ahead and cancel:
$$ \frac{\cancel{2}, \cancel{7}, \cancel{2}, \cancel{3}, \cancel{5}}{\cancel{3}, \cancel{5}, \cancel{2}, \cancel{2}, \cancel{7}, 5} = \frac{1}{5} $$
Note that in the above case, there was only a single 5 left as a denominator and no value left as a numerator. This is equivalent to there just being “one five” so we write \(\frac{1}{5}\)
Example of multiplying fractions with negative fractions containing variables
Calculate: $$- \frac{6x}{55y} \cdot - \frac{110y^2}{105x^2}$$
First multiply in place:
$$ \frac{(3 \cdot 2 \cdot x) \cdot (5 \cdot 2 \cdot 11 \cdot y \cdot y)}{(5 \cdot 11 \cdot y) \cdot (7 \cdot 5 \cdot 3 \cdot x \cdot x)} $$
Then cancel:
$$ \frac{(\cancel{3} \cdot 2 \cdot \cancel{x}) \cdot (\cancel{5} \cdot 2 \cdot \cancel{11} \cdot \cancel{y} \cdot y)}{(\cancel{5} \cdot \cancel{11} \cdot \cancel{y}) \cdot (7 \cdot 5 \cdot \cancel{3} \cdot \cancel{x} \cdot x)} = \frac{2 \cdot 2 \cdot y}{7 \cdot 5 \cdot x} $$
Then reduce:
$$ \frac{2 \cdot 2 \cdot y}{7 \cdot 5 \cdot x} = \frac{4y}{35x} $$